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Abstract—As automatic speech recognition (ASR) systems have
been integrated into a diverse set of devices around us in recent
years, security vulnerabilities of them have become an increasing
concern for the public. Existing studies have demonstrated
that deep neural networks (DNNs), acting as the computation
core of ASR systems, is vulnerable to deliberately designed
adversarial attacks. Based on the gradient descent algorithm,
existing studies have successfully generated adversarial samples
which can disturb ASR systems and produce adversary-expected
transcript texts designed by adversaries. Most of these research
simulated white-box attacks which require knowledge of all the
components in the targeted ASR systems. In this work, we
propose the first semi-black-box attack against the ASR system -
Kaldi. Requiring only partial information from Kaldi and none
from DNN, we can embed malicious commands into a single
audio chip based on the gradient-independent genetic algorithm.
The crafted audio clip could be recognized as the embedded
malicious commands by Kaldi and unnoticeable to humans in the
meanwhile. Experiments show that our attack can achieve high
attack success rate with unnoticeable perturbations to three types
of audio clips (pop music, pure music, and human command)
without the need of the underlying DNN model parameters and
architecture.

Index Terms—semi-black-box attacks, adversarial samples,
speech recognition, Kaldi, deep neural network

I. INTRODUCTION

Nowadays automatic speech recognition (ASR) systems,
such as Siri, Google, and Alexa Assistants, are ubiquitous
in our daily lives. These systems provide human voice in-
terfaces for the convenience of various tasks, such as access
control, smart home appliance control, voice navigation, and
information query. Increasingly many devices have embedded
the ASR systems, including smartphones, standalone smart
speakers and smart home/office appliances. In the meanwhile,
the rapid deployment of the ASR systems bring upon concerns
of the potential security vulnerability in them.

As the computational core of ASR systems, deep neural
networks (DNNs) have sufficient power for modeling large
vocabularies and for coping with practical interference (e.g.,
noises and accent) to perform robust speaker-independent
speech recognition. However, recent studies [2], [4], [12], [14]
show that DNNs are vulnerable to adversarial perturbations,
which allow attackers to translate speech into any text desired
by an adversary. For instance, studies [2], [4], [12] are pro-

posed to use a genetic algorithm for black-box attacks1 or
gradient-descent algorithm for white-box attacks2 to generate
adversarial examples against DeepSpeech [8], an open source
Speech-To-Text engine implemented using Tensorflow. How-
ever, these approaches can only construct adversarial examples
against DeepSpeech with a simplified end-to-end deep learning
structure, which has a relatively lower speech recognition
performance and is less favorable compared with other ASR
systems such as Kaldi [10]. Moreover, CommanderSong [14]
mainly targets Kaldi system due to its popularity. It can
embed any malicious command into regular songs, making
people hear them as common music whereas Kaldi system
would recognize them as a malicious command. However,
CommanderSong requires the adversary to know all of the
essential components (e.g., extracted features, deep learning
models) in the ASR system, which is not always possible in
practice.

Different from existing studies, this paper proposes a semi-
black-box adversarial attack against Kaldi, which is one of
the most popular ASR systems. The proposed attack only
requires partial information (e.g., embedding results of DNNs
and HMM states’ mappings) of the ASR system rather than
the full knowledge of the system’s DNNs models (e.g. its
structure, weights or parameters). Thus, the proposed attack
could make the attack feasible even if the adversary only
has access to some specific function interfaces in the system.
Particularly, we first derive DNN embedding results from an
original audio sample and intermediate results of malicious
commands calculated from the language model (LM). By
referring to the mapping between two results, we implement
a genetic algorithm to construct adversary perturbations in
order to make the adversary samples recognizable by the ASR
system but unnoticeable to humans. The main contributions of
our work are summarized as follows:

• We propose a semi-black-box adversarial attack against
Kaldi system, in which the adversary only requires partial
information (e.g., the mapping between HMM states
and transitions, DNN embedding output) rather than

1Black-box attack does not require the adversary to have any internal
knowledge about the DNN model.

2White-box attack requires the adversary to possess the knowledge of the
underlying ASR system.
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TABLE I: Example of words with their composing phonemes.

Word Composing Phonemes
yes y B eh I s E
no n B ow E

speech s B p I iy I ch E
attack ah B t I ae I k E

the whole inner model knowledge such as the specific
structure, weights or parameters of the DNN model.

• We show that using genetic algorithm could appropriately
construct adversarial perturbations against the ASR sys-
tem (e.g., Kaldi) without having to know the parameter
and architecture of the system’s DNN model.

• Our experiments of embedding adversarial perturbations
into pop music, pure music, and pure voice commands,
demonstrate the effectiveness and flexibility of the pro-
posed adversarial attack against Kaldi.

II. RELATED WORK

A. Adversarial Attacks Against DeepSpeech

Most of the existing adversarial attacks [2], [4], [5], [12]
are focused on attacking DeepSpeech, which is a state-of-
the-art speech recognition system developed using end-to-end
deep learning [8]. The throughout flow allows it to directly
convert complex inputs (e.g. raw audio) to comprehensive
transcription texts based on computations from a single DNN.
As a result, this makes adversarial perturbations relatively
easy to construct. Meanwhile, DeepSpeech is implemented
using Tensorflow, which provides a suitable coding environ-
ment for adversarial machine learning algorithms such as
gradient descent and fast gradient sign method (FGSM) [7].
For instance, targeted black-box attacks using the genetic
algorithm are implemented in [2], [12], while a white-box
attack is proposed in [4] using the gradient descent algorithm
and FGSM. Houdini [5] proposes a novel flexible approach
for final performance measures of intended tasks, but it still
requires an adversary to know the gradient of the target model.

B. Adversarial Attacks Against Kaldi

To the best of our knowledge, CommanderSong [14] and
psychoacoustic hiding-based approach [11] are the only two
attack approaches against Kaldi. Both of these attacks are
a white-box attack, where an adversary needs to have the
inner knowledge of an ASR system. By using gradient de-
scent or back propagation algorithms, they can embed hidden
commandsin audio clips which could be recognized by the
Kaldi system. Different from existing studies, we propose a
semi-black-box adversarial attack against Kaldi, which only
requires partial knowledge of the ASR system. Instead of using
the gradient-dependent algorithm, we demonstrate a gradient-
independent algorithm (i.e., genetic algorithm) is also feasible
towards adversarial attacks against Kaldi.

III. BACKGROUND OF KALDI

Kaldi is an open-source toolkit used for speech recognition
based on DNN-HMM. Written in C++ and licensed under
the Apache License v2.0 [10], it is one of the most popular

TABLE II: Transition model in Kaldi.

Phoneme HMM Pdf-id Transition-id Transition

n B 0 307 36045 0 to 1
36046 0 to 2

n B 1 1692 36449 self-loop
36450 1 to 2

ow E 0 2725 39583 0 to 1
39584 0 to 2

ow E 1 89 39707 self-loop
39708 1 to 2

TABLE III: The decoding result of word ”no”.

Phoneme Transition-id Sequence

n B 36405 36449 36449 36449 36449
36449 36449 36449 36449 36449

ow E 39583 39707 39707 39707 39707
39707 39707 39707 39707 39707

ASR systems among research and major companies such as
IBM [3] and Microsoft [13]. Compared with DeepSpeech, the
DNN-HMM structure utilized by Kaldi is more complicated
and traditional, resulting in better speech recognition accuracy.
For instance, Kaldi provides a Word Error Rate (WER) of
4.28% whereas DeepSpeech gives 5.83% on Librispeech clean
data [9].

In linguistics, phonemes as the smallest unit to compose a
word could distinguish one word from another. As shown in
Table I, different words are composed of different phonemes.
Therefore, the ASR system needs to determine these phonemes
in order to translate speech into text. To confirm each phoneme
in Kaldi, a series of transitions among three HMM states
are used. Table II illustrates the relationship between HMM
states, pdf-ids and transition-ids of two phonemes (i.e., n B
and ow E). A transition-id is defined to index a specific
transition between two HMM states of the same phoneme,
and a sequence of them directly determines which phoneme
can lead to the transcription text. A DNN model plays a
role to calculate the probability of each HMM state at each
frame of the audio input, using the pre-trained probability
density function (pdf). Additionally, the pdf is indexed using
pdf-id, and from the computation result of DNN, we can
obtain the pdf-id sequence with the highest probability. After
obtaining all possibilities, the language model (LM) will do the
calculation accordingly to derive the transition-id sequence.
The transition-ids are mapped with HMM states, along with
pdf-ids.

Table III shows the transition-id sequence calculated by
the LM. The audio input is a single word “no” spoken by
a native male speaker. Although the transition-id is calculated
from the likelihood of pdf-id, after we obtain the determined
sequence of transition-id, we can retrodict the sequence of
pdf-id referring to the transition model in Table II. For the
phoneme n B, the pdf-id sequence should be [307, 1692,
1692, 1692, 1692, 1692, 1692, 1692, 1692, 1692], and the pdf-
id sequence for phoneme ow E should be [2725, 89, 89, 89,
89, 89, 89, 89, 89, 89]. Therefore, if the pdf-id sequence with
the highest probability of audio input is same or close to the
above pdf-id sequence, the audio input would be recognized
as n B and ow E, which then lead to the word “no”.
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TABLE IV: Different transition-ids can represent the same
stage.

phoneme HMM Pdf-id Transition-id Transition

ow E 1 57 39705 self-loop
39706 1 to 2

ow E 1 89 39707 self-loop
39708 1 to 2

ow E 1 129 39709 self-loop
39710 1 to 2

ow E 1 134 39711 self-loop
39712 1 to 2

Additionally, we find that different pdf-id sequences may
lead to the same malicious command. Therefore, if the pdf-id
sequence of the adversarial sample is close to one of them,
it can be recognized as the malicious command by Kaldi. In
the transition model of Kaldi, we find that different transition-
ids and pdf-ids may be corresponding to the same phoneme,
HMM state and the transition. Table IV shows the possible
transition-ids and pdf-ids of the phoneme ow E. For instance,
both the pdf-id sequence [2725, 89, 89, 89, 89, 89, 89, 89, 89,
89] and [2725, 89, 57, 57, 89, 129, 134, 129, 89, 134] lead
to the phoneme ow E, even though they differ significantly
from each other. With a specific transition-id sequence of the
malicious command and the transition model, we can derive
thousands of different pdf-id sequences that can be regarded
as “malicious pdf-id sequence”.

IV. PROPOSED SEMI-BLACK-BOX ATTACK

A. Flow of the Proposed Attack

The basic idea of the proposed attack is to generate an ad-
versarial sample against Kaldi, which can make it produce the
adversary-expected transcript text. As illustrated in Figure 1,
the adversary first needs to take the original audio, which
would be embedded with the malicious command, as the input.
During initialization, the input audio would be added with
different random nosies to obtain a population which contains
various audio samples. For each individual in the population,
the audio samples would go through MFCC Extraction to
capture the MFCC features which will be taken as the input of
DNN model. After DNN Computation, the most-likely pdf-id
sequence for each individual will be derived, and then served
as an input for Score Calculation.

Meanwhile, the malicious command also needs to be pro-
cessed. Same as each individual in the population of the orig-
inal audio, the command first needs to be processed through
MFCC Extraction and DNN Computation. After obtaining the
most-likely pdf-id sequence from the DNN, the Language
Model will compute the target pdf-id sequence of the malicious
command, which servers as the input of Score Calculation.

In Score Calculation, the most-likely pdf-id sequence for
each individual will be calculated with the target pdf-id
sequence to obtain a similarity score s. If the highest score
in the population smax is greater than the threshold st or the
iteration time t reaches the max iteration time tmax, the attack
ends and the individual with the highest score will be the final
adversarial sample output. Otherwise, the attack will move

Fig. 1: Flow of the attack process.
Algorithm 1 Genetic algorithm
Input: Audio Input X , Malicious pdf-id Sequence Y
Output: Adversarial Sample X ′

1: function GENETIC(X,Y )
2: population← Initialization(X)
3: while t < tmax and smax < st do
4: for each individual x in population do
5: s← ScoreCalculation(x, Y )
6: end for
7: bestSample← population[argmax(scores)]
8: children←Mutation(Crossover(population))
9: population← bestSample+ children

10: MutationP ← newMuatationP
11: t← t+ 1
12: end while
13: return bestSample
14: end function

to Crossover and Mutation to generate a new population to
iteratively find the optimal adversarial sample.

B. Generating Adversarial Sample based on Genetic Algo-
rithm

The genetic algorithm is a method used for solving opti-
mization problems based on the principle of natural selection.
It’s commonly used to generate high-quality solutions by
relying on bio-inspired operators such as mutation, crossover,
and selection [6]. At each step, the genetic algorithm selects
individuals who have a relatively better performance from the
current population as parents and derive a child from them
for the next population. For each generation, it only keeps
the individual who has the highest score and aligns it with
other children to be the next population. Over successive
iterations, the population “evolves” towards an optimal so-
lution. The algorithm ends when the iteration time t reaches
the max iteration time tmax or the score s is high enough
to reach the threshold st. It is instrumental in solving a
variety of optimization problems that are not well suited for
standard optimization algorithms, including problems in which
the objective function is discontinuous, non-differentiable,
stochastic, or highly nonlinear. The pseudocode of the genetic
algorithm used in our attack is stated in Algorithm 1.

Initialization. In particular, given an original input X ,
we generate populationSize crafted audio samples by
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TABLE V: An example of crossover mechanism.

Audio Array 1 [ -1696 -529 718 ... 10054 9485 9914 ]
* * * ... * * *

Random Weights [ 0.4 0.6 0.3 ... 0.2 0.9 0.7 ]
+ + + ... + + +

Audio Array 2 [ -1580 -600 700 ... 10050 9592 9923 ]
* * * ... * * *

Random Weights [ 0.6 0.4 0.7 ... 0.8 0.1 0.3 ]
= = = ... = = =

Child Audio Array [ 1626 557 705 ... 10051 9496 9917 ]

adding different noises in it. The noises are different Gaus-
sian white noises following the same normal distribution.
populationSize is the size of the population for each gen-
eration, which is a constant integer.

Score Calculation. For each generation, we calculate the
similarity score s between each individual in the current pop-
ulation and the malicious command. Particularly, we calculate
the Euclidean Distance from the individual’s most likely pdf-
id sequence to all of the possible pdf-id sequences of the
malicious command, and then only keep the minimal value
as Lmin. And we set the score function as

s = e−Lmin . (1)

The higher the score is, the more likely the crafted audio can
be recognized as the malicious command, and we only keep
the individual who has the highest score to be passed to the
next generation.

Crossover and Mutation. Crossover and Mutation are two
essential steps to generate children for the next population.
The next population consists the amount of populationSize -
1 children and the individual which has the highest score in the
current population. Particularly, during crossover, two of the
individuals in the current population will be chosen randomly
as the parents to generate a child. Individual which has a higher
score will more likely to be chosen. After selecting the two
audio arrays a and b as the parents, we use the following
formula to generate the child audio array c:

ci = p ∗ ai + (1− p) ∗ bi, (2)

where p is the weight, which is a float randomly generated
between 0 and 1. In this way, the child carries both parents’
characteristics. Table V shows an example of crossover mech-
anism.

Note that if we only generate the children using crossover,
after a certain number of iterations, all of the children will tend
to be the same and will never produce better samples. Mutation
is designed to overcome this issue. Each child has a probability
of triggering mutation after being generated by crossover. If a
child happens to trigger mutation, a relatively smaller Gaussian
while noises will be added into it. We set mutation p as the
probability of triggering mutation for each child. After one
iteration, if the highest score of the population doesn’t increase
(no better sample has been generated), we will increase the
mutation p slightly. Once the best score increases, we will set
the mutation p to its original value. We will keep iterating

TABLE VI: Attack success rate.

Audio Type Sample Number Iteration Success Rate
Pure Music 10 3000 90%
Pop Music 10 3000 70%

Voice Command 5 3000 20%

until one of the individuals’ score reaches st or iteration time
reaches tmax.

V. PERFORMANCE EVALUATION

A. Experimental Setup

In the experiments, we use three audio clips as the original
audio input. They vary from a popular song “Good Time” by
Owl City & Carly Rae Jepsen, a pure music “Take me hands”
by Daishi Dance, to a normal voice command generated by
the text speech engine [1] with a native male speaker sound.
Similarly, we use TTSREADER [1] as the text-to-speech
engine to generate various malicious commands. To generate
adversarial audio samples, we use Google Cloud Compute
Engine to run our proposed semi-black-box adversarial attack
algorithm, in which the in-cloud virtual machine has 4 vCPUs
with a memory of 16GB. After constructing these adversarial
samples, we directly feed the adversarial sample into Kaldi to
obtain the speech recognition result.

B. Attack Success Rate

We consider an attack as success if the recognition result
of an adversarial sample is exactly the same as the malicious
command. For instance, we set the malicious command to be
“yes” or “no”, then even if the adversarial sample is recognized
as “yeah” or “nope”, it’s also considered as a failure. The
attack success rate of our attack is shown in Table VI. For pure
music and pop music, we construct 10 adversary audio samples
for each using the proposed genetic algorithm while for the
pure voice command, we construct 5 adversary audio samples.
Moreover, we set the max iteration time as 3000. Experiments
demonstrate the effectiveness of the proposed semi-black-box
adversarial attack against Kaldi ASR system, and the attack
success rate can reach as high as 90%. It is important to note
that if we expand the number of max iterations, we could
further improve the attack success rate.

We observe that pure music has the highest attack success
rate (i.e., 90%) as there is no human voice (e.g., lyric) in it. As
for pop music, on account of the indistinct of the human voice
(people won’t even be able to hear lyrics clearly some times),
it’s also suitable as a carrier for malicious commands. But
when it comes to the pure voice command generated by the
text-to-speech engine, the attack success rate decreases largely.
The pdf-likelihood is much higher in the posterior probability
matrix computed from the pure voice command in comparison
to popular music. There exists no noise and the DNN model
is well trained, thus leads to a significantly higher probability
of the correct pdf-ids compared with others, making it hard to
make the malicious-pdf-ids have a higher possibility.
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TABLE VII: The similarity between the original audio and the
crafted one.

Audio Type Sample Number Iteration Similarity
Pure Music 10 3000 97%
Pop Music 10 3000 96%

Voice Command 5 3000 94%

Fig. 2: Similarity between the original song and the crafted
song (i.e., pure music).

C. Similarity Between the Original Audio and the Crafted One

To quantify the similarity between the original audio and the
crafted one, we use the Pearson Correlation Coefficient (PCC)
to calculate the similarity between the adversarial sample and
the original audio clip. The correlation results are shown in
Table VII. The similarity between the original audio input
and the adversarial sample is relatively high, which is over
95%. This makes the added perturbation nearly impossible
for humans to be noticed. We played adversarial samples
to several volunteers, and none of them considered these
adversarial samples are abnormal. From Figure 2, it’s obvious
that the original audio and adversarial sample only have little
difference when using pure music as the audio input, and the
perturbations added to it are relatively small. The similarity
between them on average is 97%. Figure 3 is the waveform of
the pure voice command. We can see that the similarity is still
as high as 94%, though the perturbations are relatively more
obvious.

VI. CONCLUSION

In this paper, we propose a semi-black-box adversary attack
that can embed malicious voice commands into audio clips,
and these embedded commands can be recognized by the
ASR system Kaldi while remaining unnoticeable to humans.
Different from existing studies, the proposed semi-black-box
attack does not require the adversary to possess the full knowl-
edge of the ASR system’s DNN model. Using the genetic
algorithm, we successfully construct adversary perturbations
that are added into three kinds of audio clips. And the crafted
audio clips (e.g., music or normal human command) can be
successfully recognized as the inserted malicious commands
by Kaldi, but remain a high similarity with the original audio,
making them hard to be noticed for humans.
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